3.14 \(\int \frac{(a+b \tan ^{-1}(c+d x))^2}{(c e+d e x)^5} \, dx\)

Optimal. Leaf size=170 \[ \frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{2 d e^5 (c+d x)}-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}+\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5}-\frac{b^2}{12 d e^5 (c+d x)^2}-\frac{2 b^2 \log (c+d x)}{3 d e^5}+\frac{b^2 \log \left ((c+d x)^2+1\right )}{3 d e^5} \]

[Out]

-b^2/(12*d*e^5*(c + d*x)^2) - (b*(a + b*ArcTan[c + d*x]))/(6*d*e^5*(c + d*x)^3) + (b*(a + b*ArcTan[c + d*x]))/
(2*d*e^5*(c + d*x)) + (a + b*ArcTan[c + d*x])^2/(4*d*e^5) - (a + b*ArcTan[c + d*x])^2/(4*d*e^5*(c + d*x)^4) -
(2*b^2*Log[c + d*x])/(3*d*e^5) + (b^2*Log[1 + (c + d*x)^2])/(3*d*e^5)

________________________________________________________________________________________

Rubi [A]  time = 0.226746, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 10, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.435, Rules used = {5043, 12, 4852, 4918, 266, 44, 36, 29, 31, 4884} \[ \frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{2 d e^5 (c+d x)}-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}+\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5}-\frac{b^2}{12 d e^5 (c+d x)^2}-\frac{2 b^2 \log (c+d x)}{3 d e^5}+\frac{b^2 \log \left ((c+d x)^2+1\right )}{3 d e^5} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTan[c + d*x])^2/(c*e + d*e*x)^5,x]

[Out]

-b^2/(12*d*e^5*(c + d*x)^2) - (b*(a + b*ArcTan[c + d*x]))/(6*d*e^5*(c + d*x)^3) + (b*(a + b*ArcTan[c + d*x]))/
(2*d*e^5*(c + d*x)) + (a + b*ArcTan[c + d*x])^2/(4*d*e^5) - (a + b*ArcTan[c + d*x])^2/(4*d*e^5*(c + d*x)^4) -
(2*b^2*Log[c + d*x])/(3*d*e^5) + (b^2*Log[1 + (c + d*x)^2])/(3*d*e^5)

Rule 5043

Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((f*x)/d)^m*(a + b*ArcTan[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f, 0
] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4852

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
n[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTan[c*x])^(p - 1))/(1 + c^
2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 4918

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/d,
 Int[(f*x)^m*(a + b*ArcTan[c*x])^p, x], x] - Dist[e/(d*f^2), Int[((f*x)^(m + 2)*(a + b*ArcTan[c*x])^p)/(d + e*
x^2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 4884

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(p +
 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]

Rubi steps

\begin{align*} \int \frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{(c e+d e x)^5} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \tan ^{-1}(x)\right )^2}{e^5 x^5} \, dx,x,c+d x\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b \tan ^{-1}(x)\right )^2}{x^5} \, dx,x,c+d x\right )}{d e^5}\\ &=-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}+\frac{b \operatorname{Subst}\left (\int \frac{a+b \tan ^{-1}(x)}{x^4 \left (1+x^2\right )} \, dx,x,c+d x\right )}{2 d e^5}\\ &=-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}+\frac{b \operatorname{Subst}\left (\int \frac{a+b \tan ^{-1}(x)}{x^4} \, dx,x,c+d x\right )}{2 d e^5}-\frac{b \operatorname{Subst}\left (\int \frac{a+b \tan ^{-1}(x)}{x^2 \left (1+x^2\right )} \, dx,x,c+d x\right )}{2 d e^5}\\ &=-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}-\frac{b \operatorname{Subst}\left (\int \frac{a+b \tan ^{-1}(x)}{x^2} \, dx,x,c+d x\right )}{2 d e^5}+\frac{b \operatorname{Subst}\left (\int \frac{a+b \tan ^{-1}(x)}{1+x^2} \, dx,x,c+d x\right )}{2 d e^5}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x^3 \left (1+x^2\right )} \, dx,x,c+d x\right )}{6 d e^5}\\ &=-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}+\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{2 d e^5 (c+d x)}+\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x^2 (1+x)} \, dx,x,(c+d x)^2\right )}{12 d e^5}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x \left (1+x^2\right )} \, dx,x,c+d x\right )}{2 d e^5}\\ &=-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}+\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{2 d e^5 (c+d x)}+\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}+\frac{b^2 \operatorname{Subst}\left (\int \left (\frac{1}{x^2}-\frac{1}{x}+\frac{1}{1+x}\right ) \, dx,x,(c+d x)^2\right )}{12 d e^5}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x (1+x)} \, dx,x,(c+d x)^2\right )}{4 d e^5}\\ &=-\frac{b^2}{12 d e^5 (c+d x)^2}-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}+\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{2 d e^5 (c+d x)}+\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}-\frac{b^2 \log (c+d x)}{6 d e^5}+\frac{b^2 \log \left (1+(c+d x)^2\right )}{12 d e^5}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x} \, dx,x,(c+d x)^2\right )}{4 d e^5}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{1+x} \, dx,x,(c+d x)^2\right )}{4 d e^5}\\ &=-\frac{b^2}{12 d e^5 (c+d x)^2}-\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{6 d e^5 (c+d x)^3}+\frac{b \left (a+b \tan ^{-1}(c+d x)\right )}{2 d e^5 (c+d x)}+\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5}-\frac{\left (a+b \tan ^{-1}(c+d x)\right )^2}{4 d e^5 (c+d x)^4}-\frac{2 b^2 \log (c+d x)}{3 d e^5}+\frac{b^2 \log \left (1+(c+d x)^2\right )}{3 d e^5}\\ \end{align*}

Mathematica [A]  time = 0.270523, size = 245, normalized size = 1.44 \[ -\frac{3 a^2-2 b \tan ^{-1}(c+d x) \left (3 a \left (6 c^2 d^2 x^2+4 c^3 d x+c^4+4 c d^3 x^3+d^4 x^4-1\right )+b \left (9 c^2 d x+3 c^3+9 c d^2 x^2-c+3 d^3 x^3-d x\right )\right )-6 a b (c+d x)^3+2 a b (c+d x)-4 b^2 (c+d x)^4 \log \left (c^2+2 c d x+d^2 x^2+1\right )-3 b^2 \left (6 c^2 d^2 x^2+4 c^3 d x+c^4+4 c d^3 x^3+d^4 x^4-1\right ) \tan ^{-1}(c+d x)^2+b^2 (c+d x)^2+8 b^2 (c+d x)^4 \log (c+d x)}{12 d e^5 (c+d x)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTan[c + d*x])^2/(c*e + d*e*x)^5,x]

[Out]

-(3*a^2 + 2*a*b*(c + d*x) + b^2*(c + d*x)^2 - 6*a*b*(c + d*x)^3 - 2*b*(b*(-c + 3*c^3 - d*x + 9*c^2*d*x + 9*c*d
^2*x^2 + 3*d^3*x^3) + 3*a*(-1 + c^4 + 4*c^3*d*x + 6*c^2*d^2*x^2 + 4*c*d^3*x^3 + d^4*x^4))*ArcTan[c + d*x] - 3*
b^2*(-1 + c^4 + 4*c^3*d*x + 6*c^2*d^2*x^2 + 4*c*d^3*x^3 + d^4*x^4)*ArcTan[c + d*x]^2 + 8*b^2*(c + d*x)^4*Log[c
 + d*x] - 4*b^2*(c + d*x)^4*Log[1 + c^2 + 2*c*d*x + d^2*x^2])/(12*d*e^5*(c + d*x)^4)

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 242, normalized size = 1.4 \begin{align*} -{\frac{{a}^{2}}{4\,d{e}^{5} \left ( dx+c \right ) ^{4}}}-{\frac{{b}^{2} \left ( \arctan \left ( dx+c \right ) \right ) ^{2}}{4\,d{e}^{5} \left ( dx+c \right ) ^{4}}}+{\frac{{b}^{2} \left ( \arctan \left ( dx+c \right ) \right ) ^{2}}{4\,d{e}^{5}}}-{\frac{{b}^{2}\arctan \left ( dx+c \right ) }{6\,d{e}^{5} \left ( dx+c \right ) ^{3}}}+{\frac{{b}^{2}\arctan \left ( dx+c \right ) }{2\,d{e}^{5} \left ( dx+c \right ) }}+{\frac{{b}^{2}\ln \left ( 1+ \left ( dx+c \right ) ^{2} \right ) }{3\,d{e}^{5}}}-{\frac{{b}^{2}}{12\,d{e}^{5} \left ( dx+c \right ) ^{2}}}-{\frac{2\,{b}^{2}\ln \left ( dx+c \right ) }{3\,d{e}^{5}}}-{\frac{ab\arctan \left ( dx+c \right ) }{2\,d{e}^{5} \left ( dx+c \right ) ^{4}}}+{\frac{ab\arctan \left ( dx+c \right ) }{2\,d{e}^{5}}}-{\frac{ab}{6\,d{e}^{5} \left ( dx+c \right ) ^{3}}}+{\frac{ab}{2\,d{e}^{5} \left ( dx+c \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctan(d*x+c))^2/(d*e*x+c*e)^5,x)

[Out]

-1/4/d*a^2/e^5/(d*x+c)^4-1/4/d*b^2/e^5/(d*x+c)^4*arctan(d*x+c)^2+1/4/d*b^2/e^5*arctan(d*x+c)^2-1/6/d*b^2/e^5*a
rctan(d*x+c)/(d*x+c)^3+1/2/d*b^2/e^5*arctan(d*x+c)/(d*x+c)+1/3*b^2*ln(1+(d*x+c)^2)/d/e^5-1/12*b^2/d/e^5/(d*x+c
)^2-2/3*b^2*ln(d*x+c)/d/e^5-1/2/d*a*b/e^5/(d*x+c)^4*arctan(d*x+c)+1/2/d*a*b/e^5*arctan(d*x+c)-1/6/d*a*b/e^5/(d
*x+c)^3+1/2/d*a*b/e^5/(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 1.8787, size = 721, normalized size = 4.24 \begin{align*} \frac{1}{6} \,{\left (d{\left (\frac{3 \, d^{2} x^{2} + 6 \, c d x + 3 \, c^{2} - 1}{d^{5} e^{5} x^{3} + 3 \, c d^{4} e^{5} x^{2} + 3 \, c^{2} d^{3} e^{5} x + c^{3} d^{2} e^{5}} + \frac{3 \, \arctan \left (\frac{d^{2} x + c d}{d}\right )}{d^{2} e^{5}}\right )} - \frac{3 \, \arctan \left (d x + c\right )}{d^{5} e^{5} x^{4} + 4 \, c d^{4} e^{5} x^{3} + 6 \, c^{2} d^{3} e^{5} x^{2} + 4 \, c^{3} d^{2} e^{5} x + c^{4} d e^{5}}\right )} a b + \frac{1}{12} \,{\left (2 \, d{\left (\frac{3 \, d^{2} x^{2} + 6 \, c d x + 3 \, c^{2} - 1}{d^{5} e^{5} x^{3} + 3 \, c d^{4} e^{5} x^{2} + 3 \, c^{2} d^{3} e^{5} x + c^{3} d^{2} e^{5}} + \frac{3 \, \arctan \left (\frac{d^{2} x + c d}{d}\right )}{d^{2} e^{5}}\right )} \arctan \left (d x + c\right ) - \frac{{\left (3 \,{\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \arctan \left (d x + c\right )^{2} - 4 \,{\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \log \left (d^{2} x^{2} + 2 \, c d x + c^{2} + 1\right ) + 8 \,{\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \log \left (d x + c\right ) + 1\right )} d^{2}}{d^{5} e^{5} x^{2} + 2 \, c d^{4} e^{5} x + c^{2} d^{3} e^{5}}\right )} b^{2} - \frac{b^{2} \arctan \left (d x + c\right )^{2}}{4 \,{\left (d^{5} e^{5} x^{4} + 4 \, c d^{4} e^{5} x^{3} + 6 \, c^{2} d^{3} e^{5} x^{2} + 4 \, c^{3} d^{2} e^{5} x + c^{4} d e^{5}\right )}} - \frac{a^{2}}{4 \,{\left (d^{5} e^{5} x^{4} + 4 \, c d^{4} e^{5} x^{3} + 6 \, c^{2} d^{3} e^{5} x^{2} + 4 \, c^{3} d^{2} e^{5} x + c^{4} d e^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(d*x+c))^2/(d*e*x+c*e)^5,x, algorithm="maxima")

[Out]

1/6*(d*((3*d^2*x^2 + 6*c*d*x + 3*c^2 - 1)/(d^5*e^5*x^3 + 3*c*d^4*e^5*x^2 + 3*c^2*d^3*e^5*x + c^3*d^2*e^5) + 3*
arctan((d^2*x + c*d)/d)/(d^2*e^5)) - 3*arctan(d*x + c)/(d^5*e^5*x^4 + 4*c*d^4*e^5*x^3 + 6*c^2*d^3*e^5*x^2 + 4*
c^3*d^2*e^5*x + c^4*d*e^5))*a*b + 1/12*(2*d*((3*d^2*x^2 + 6*c*d*x + 3*c^2 - 1)/(d^5*e^5*x^3 + 3*c*d^4*e^5*x^2
+ 3*c^2*d^3*e^5*x + c^3*d^2*e^5) + 3*arctan((d^2*x + c*d)/d)/(d^2*e^5))*arctan(d*x + c) - (3*(d^2*x^2 + 2*c*d*
x + c^2)*arctan(d*x + c)^2 - 4*(d^2*x^2 + 2*c*d*x + c^2)*log(d^2*x^2 + 2*c*d*x + c^2 + 1) + 8*(d^2*x^2 + 2*c*d
*x + c^2)*log(d*x + c) + 1)*d^2/(d^5*e^5*x^2 + 2*c*d^4*e^5*x + c^2*d^3*e^5))*b^2 - 1/4*b^2*arctan(d*x + c)^2/(
d^5*e^5*x^4 + 4*c*d^4*e^5*x^3 + 6*c^2*d^3*e^5*x^2 + 4*c^3*d^2*e^5*x + c^4*d*e^5) - 1/4*a^2/(d^5*e^5*x^4 + 4*c*
d^4*e^5*x^3 + 6*c^2*d^3*e^5*x^2 + 4*c^3*d^2*e^5*x + c^4*d*e^5)

________________________________________________________________________________________

Fricas [B]  time = 2.09413, size = 937, normalized size = 5.51 \begin{align*} \frac{6 \, a b d^{3} x^{3} + 6 \, a b c^{3} +{\left (18 \, a b c - b^{2}\right )} d^{2} x^{2} - b^{2} c^{2} - 2 \, a b c + 2 \,{\left (9 \, a b c^{2} - b^{2} c - a b\right )} d x + 3 \,{\left (b^{2} d^{4} x^{4} + 4 \, b^{2} c d^{3} x^{3} + 6 \, b^{2} c^{2} d^{2} x^{2} + 4 \, b^{2} c^{3} d x + b^{2} c^{4} - b^{2}\right )} \arctan \left (d x + c\right )^{2} - 3 \, a^{2} + 2 \,{\left (3 \, a b d^{4} x^{4} + 3 \,{\left (4 \, a b c + b^{2}\right )} d^{3} x^{3} + 3 \, a b c^{4} + 3 \, b^{2} c^{3} + 9 \,{\left (2 \, a b c^{2} + b^{2} c\right )} d^{2} x^{2} - b^{2} c +{\left (12 \, a b c^{3} + 9 \, b^{2} c^{2} - b^{2}\right )} d x - 3 \, a b\right )} \arctan \left (d x + c\right ) + 4 \,{\left (b^{2} d^{4} x^{4} + 4 \, b^{2} c d^{3} x^{3} + 6 \, b^{2} c^{2} d^{2} x^{2} + 4 \, b^{2} c^{3} d x + b^{2} c^{4}\right )} \log \left (d^{2} x^{2} + 2 \, c d x + c^{2} + 1\right ) - 8 \,{\left (b^{2} d^{4} x^{4} + 4 \, b^{2} c d^{3} x^{3} + 6 \, b^{2} c^{2} d^{2} x^{2} + 4 \, b^{2} c^{3} d x + b^{2} c^{4}\right )} \log \left (d x + c\right )}{12 \,{\left (d^{5} e^{5} x^{4} + 4 \, c d^{4} e^{5} x^{3} + 6 \, c^{2} d^{3} e^{5} x^{2} + 4 \, c^{3} d^{2} e^{5} x + c^{4} d e^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(d*x+c))^2/(d*e*x+c*e)^5,x, algorithm="fricas")

[Out]

1/12*(6*a*b*d^3*x^3 + 6*a*b*c^3 + (18*a*b*c - b^2)*d^2*x^2 - b^2*c^2 - 2*a*b*c + 2*(9*a*b*c^2 - b^2*c - a*b)*d
*x + 3*(b^2*d^4*x^4 + 4*b^2*c*d^3*x^3 + 6*b^2*c^2*d^2*x^2 + 4*b^2*c^3*d*x + b^2*c^4 - b^2)*arctan(d*x + c)^2 -
 3*a^2 + 2*(3*a*b*d^4*x^4 + 3*(4*a*b*c + b^2)*d^3*x^3 + 3*a*b*c^4 + 3*b^2*c^3 + 9*(2*a*b*c^2 + b^2*c)*d^2*x^2
- b^2*c + (12*a*b*c^3 + 9*b^2*c^2 - b^2)*d*x - 3*a*b)*arctan(d*x + c) + 4*(b^2*d^4*x^4 + 4*b^2*c*d^3*x^3 + 6*b
^2*c^2*d^2*x^2 + 4*b^2*c^3*d*x + b^2*c^4)*log(d^2*x^2 + 2*c*d*x + c^2 + 1) - 8*(b^2*d^4*x^4 + 4*b^2*c*d^3*x^3
+ 6*b^2*c^2*d^2*x^2 + 4*b^2*c^3*d*x + b^2*c^4)*log(d*x + c))/(d^5*e^5*x^4 + 4*c*d^4*e^5*x^3 + 6*c^2*d^3*e^5*x^
2 + 4*c^3*d^2*e^5*x + c^4*d*e^5)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atan(d*x+c))**2/(d*e*x+c*e)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.49382, size = 1902, normalized size = 11.19 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(d*x+c))^2/(d*e*x+c*e)^5,x, algorithm="giac")

[Out]

1/24*(6*pi^2*b^2*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))/pi)*sgn(1/(d*x
*e + c*e))*sgn(d)^2 + 3*pi^2*b^2*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 6*pi*b^2*arctan((d*x*e + c*e)*e^(-1))*sgn(1/(
d*x*e + c*e))*sgn(d)^2 + 6*pi^2*b^2*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-
1)))/pi)^2 + 12*pi*a*b*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 6*pi*b^2*e*sgn(1/(d*x*e + c*e))*sgn(d)^2/(d*x*e + c*e)
+ 6*pi^2*b^2*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))/pi) - 12*pi*b^2*ar
ctan((d*x*e + c*e)*e^(-1))*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))/pi)
- 6*pi^2*b^2*e^4*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))/pi)*sgn(1/(d*x
*e + c*e))*sgn(d)^2/(d*x*e + c*e)^4 + 3*pi^2*b^2 - 6*pi*b^2*arctan((d*x*e + c*e)*e^(-1)) + 6*b^2*arctan((d*x*e
 + c*e)*e^(-1))^2 - 12*pi*b^2*e*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))
/pi)/(d*x*e + c*e) - 3*pi^2*b^2*e^4*sgn(1/(d*x*e + c*e))*sgn(d)^2/(d*x*e + c*e)^4 + 6*pi*b^2*arctan((d*x*e + c
*e)*e^(-1))*e^4*sgn(1/(d*x*e + c*e))*sgn(d)^2/(d*x*e + c*e)^4 + 2*pi*b^2*e^3*sgn(1/(d*x*e + c*e))*sgn(d)^2/(d*
x*e + c*e)^3 - 12*a*b*arctan(e/(d*x*e + c*e)) - 6*pi*b^2*e/(d*x*e + c*e) + 12*b^2*arctan((d*x*e + c*e)*e^(-1))
*e/(d*x*e + c*e) - 6*pi^2*b^2*e^4*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)
))/pi)^2/(d*x*e + c*e)^4 + 8*b^2*log(e^2/(d*x*e + c*e)^2 + 1) + 6*pi*a*b*e^4*sgn(1/(d*x*e + c*e))*sgn(d)^2/(d*
x*e + c*e)^4 + 12*a*b*e/(d*x*e + c*e) - 6*pi^2*b^2*e^4*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan
((d*x*e + c*e)*e^(-1)))/pi)/(d*x*e + c*e)^4 + 12*pi*b^2*arctan((d*x*e + c*e)*e^(-1))*e^4*floor(-1/2*(pi*sgn(1/
(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))/pi)/(d*x*e + c*e)^4 + 4*pi*b^2*e^3*floor(-1/2*(pi*sg
n(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-1)))/pi)/(d*x*e + c*e)^3 - 3*pi^2*b^2*e^4/(d*x*e + c*
e)^4 + 6*pi*b^2*arctan((d*x*e + c*e)*e^(-1))*e^4/(d*x*e + c*e)^4 - 6*b^2*arctan((d*x*e + c*e)*e^(-1))^2*e^4/(d
*x*e + c*e)^4 + 2*pi*b^2*e^3/(d*x*e + c*e)^3 - 4*b^2*arctan((d*x*e + c*e)*e^(-1))*e^3/(d*x*e + c*e)^3 - 2*b^2*
e^2/(d*x*e + c*e)^2 + 12*pi*a*b*e^4*floor(-1/2*(pi*sgn(1/(d*x*e + c*e))*sgn(d)^2 - 2*arctan((d*x*e + c*e)*e^(-
1)))/pi)/(d*x*e + c*e)^4 + 6*pi*a*b*e^4/(d*x*e + c*e)^4 - 12*a*b*arctan((d*x*e + c*e)*e^(-1))*e^4/(d*x*e + c*e
)^4 - 4*a*b*e^3/(d*x*e + c*e)^3 - 6*a^2*e^4/(d*x*e + c*e)^4)*e^(-5)/d